
Communication Abstraction 
Design

Tony Skjellum
University of Tennessee at Chattanooga

PSAAP III Review
September 29, 2022



Outline---UPDATE
• Some hurdles to higher performance
• Starting to solve CPU-GPU Issues
• Abstraction Strategy
• Targets for next APIs/abstractions
• MPI APIs/Abstractions Underway
• Partitioned Collectives & Partitioned Neighbor Collectives
• Next-generation partitioned communication
• Center C++ Efforts
• Asynchronous and triggered operations and schedules
• Discovery of optimizations
• Conclusions



[Some] Hurdles to higher performance
• GPU-CPU-NIC interactions

• Packing/unpacking data (where and when and pipelined?)
• Initiating transfers, triggering 

• Overlapping communication and overheads
• Many apps spending significant time in MPI nowadays
• Mismatch of current APIs to application transfer patterns
• Scheduling of transfers to use resources efficiently

• Progress
• Predictability
• Reproducibility

• Abstraction barriers from the C Interface
• Adoption/standardization/promulgation



Starting to Solve CPU-GPU 
issues
• Partitioned point-to-point communication, stage 1

• Addresses overlap of communication and computing
• Advanced by our center team w/ Sandia collaborations
• Provides interface at the MPI+X (other than GPU)
• Partitioning gives pipelining without derived datatypes
• “Straightforward” to transform certain codes to use

• Started 2015, standardized in part in MPI-4 (June 2021)
• Demonstrates we can get new ideas “quickly” into MPI 

with application and architecture relevance
• It’s a start, its not completely solved!



Abstraction Strategy
• Analyze needs (done this)
• Determine what abstractions will help (design them)
• Prototype in MPI Advance (first working versions, gain 

usership, tweak performance, get feedback)
• Adoption into apps via MPI Advance
• Upstreaming into ExaMPI (deeper integration into 

implementation, more performance, understand tradeoffs)
• Push code and experience to MPICH and OpenMPI, etc



Targets for next APIs/abstractions

• Direct application use
• Improve inline use of MPI that varies from app to app
• Improve hiding of the specifics of how GPU-CPU communicate 

and gather/scatter data with greater performance portability

• Support enhanced performance of productivity libraries
• Example: Make Kokkos/Raja better for inter-node comms
• Apps that leverage these gain performance portability



MPI APIs/abstraction underway

• Forum working groups considering
• Tweaks to partitioned point-to-point for accelerators (MPI-4.1)

• Buffer readiness
• Receive flexibility of partitions

• Plan for partitioned collective operations (MPI-5)
• Triggered/asynchronous operations at user-level (MPI-5)

• Center participants involved in relevant Forum WGs
• MPI Advance will be tracking proposed functionality



Partitioned Collectives

• Definitions of partitioned collectives underway
• Early prototypes of several partitioned collectives 

(MPIPCL -> MPI Advance)
• Application relevance clear in several cases

• COMB, HiGrad (neighbor)
• Multi-D FFT (partitioned Alltoallv)
• Sparse iterative solvers (neighbor)
• Large allreduces (e.g., for stochastic gradient descent)

• Matches to application patterns, exploits persistence, …



Partitioned Neighbor Collectives

• Clear specification and prototypes for partitioned neighbor 
collectives (e.g., MPI_Pneighbor_alltoall*) in MPI Advance

• Demo of performance gains from using partitioning in collective 
scenarios in exemplar apps

• Studying and simplify using graphs/topologies with these 
collectives

• Extending collectives to recognize graphs are bidirectional for 
some apps (cf, Dr. Bienz’ work – Locality-Aware Persistent 
Collectives) – Gerald Collom internship @ LLNL

• Integrate into ExaMPI



C++ APIs/reimagining
• C++ APIs

• Goal: Native as part of MPI-5
• Ad hoc as demonstrated value in this R&D (ExaMPI, MPI Advance)

• Natural to C++17/20/23…, not clone of C interface
• Match application programming language
• Underway, we have efforts to use C++ directly, abandoning C 

interface for C++ apps and productivity libraries
• Support greater performance, not just more productivity
• Enable more flexibility to an MPI to offload and orchestrate 

(including with other libraries)



Center efforts in C++

• Proposals coming from our center with others for MPI-5 
standardization (but still early)

• Upstream normative headers for C++ API for existing 
implementations (MPI Advance)

• Kokkos-enhanced ExaMPI – Kokkos used by app and by 
MPI for greater performance, all C++

• Potential for the graceful replacement of classical MPI 
derived datatypes (meta programming, gather/scatter 
without datatypes)



Next-generation partitioned 
communication
• Use memory management concepts from C++
• Exploit native memory spaces from Kokkos/Raja type 

system (within a fast MPI implementation)
• Generalize partitions in new ways

• Unequal in size
• Even more unordered
• Memory managed by MPI
• Friendly to adaptive routing



Next-generation partitioned 
communication
• Apply to point-to-point and forthcoming partitioned 

neighbor collective APIs
• Enables graceful replacement of classical MPI derived 

datatypes (meta programming, gather/scatter without 
datatypes)

• These are all doable for us in FY23-24 work, but 
standardizing will take community support



Maintaining Neighbor 
Information
• It is expensive to build a single neighbor collective 

operation based on a communicator
• When small or frequent changes occur in an applications’ 

topology, costs prohibitive
• New APIs are needed to allow modification of graphs in 

neighbor collective operations without these high 
overheads

• Relevant in Adaptive Mesh, AMG within nonlinear solvers



Asynchronous and triggered 
operations and schedules
• We have prototyped schedule-based MPI (intra implementation 

and user-level)
• Amazon, Argonne, and others are proposing asynchronous 

and stream-based operations for triggering and offload
• Programming models like CUDA now incorporate schedules
• Can be useful together with partitioned communication
• Can be useful for fusing collective operations
• We have planned this for year 3-4, starting with ExaMPI



Exploratory Work
• Runtime system to support queries between Kokkos/Raja 

and MPI – two way communication about using smart 
buffer and pack/unpack choices

• How large should partitions be?
• What kind of buffers for allocation of buffers?



Summary
• Key achievements over – Year 2

• MPI Advance Release (MPIPCL, Locality-Aware Neighbor Persistent 
Collectives, MPL-lite)

• Early specification and prototyping of partitioned collectives 
(MPIPCL next release)

• Conceptualizing generalized partitioned communication
• Contributions to MPI-4.1 APIs for partition communication

• Key plans for communication abstraction design – Year 3
• User-defined schedules
• Partitioned collectives
• Exploring efficient APIs for neighbor partitioned collectives (based on 

Locality-Aware Neighbor Collectives)
• C++ API studies



Conclusions
• On-going Need for Communication Abstraction Design
• We want to make MPI’s APIs and behaviors match what applications 

need and are optimizable for
• C++ applications and libraries
• CPU-GPU[-SmartNIC] architectures

• We have a strategy going from concept through deployment and 
eventual standardization

• We’re engaged in standardizing the key improvements for CPU-GPU 
architectures, but much more to do

• Year-3 emphasizes improved APIs moved into apps and supporting 
libraries


	Communication Abstraction Design
	Outline---UPDATE
	[Some] Hurdles to higher performance
	Starting to Solve CPU-GPU issues
	Abstraction Strategy
	Targets for next APIs/abstractions
	MPI APIs/abstraction underway
	Partitioned Collectives
	Partitioned Neighbor Collectives
	C++ APIs/reimagining
	Center efforts in C++
	Next-generation partitioned communication
	Next-generation partitioned communication
	Maintaining Neighbor Information
	Asynchronous and triggered operations and schedules
	Exploratory Work
	Summary
	Conclusions

